Laser interstitial thermal therapy has been used as an ablative treatment for glioma; however, its development was limited due to technical issues. The NeuroBlate System incorporates several technological advances to overcome these drawbacks. The authors report a Phase I, thermal dose–escalation trial assessing the safety and efficacy of NeuroBlate in recurrent glioblastoma multiforme (rGBM).
Adults with suspected supratentorial rGBM of 15- to 40-mm dimension and a Karnofsky Performance Status score of ≥ 60 were eligible. After confirmatory biopsy, treatment was delivered using a rigid, gas-cooled, side-firing laser probe. Treatment was monitored using real-time MRI thermometry, and proprietary software providing predictive thermal damage feedback was used by the surgeon, along with control of probe rotation and depth, to tailor tissue coagulation. An external data safety monitoring board determined if toxicity at lower levels justified dose escalation.
Ten patients were treated at the Case Comprehensive Cancer Center (Cleveland Clinic and University Hospitals–Case Medical Center). Their average age was 55 years (range 34–69 years) and the median preoperative Karnofsky Performance Status score was 80 (range 70–90). The mean tumor volume was 6.8 ± 5 cm3 (range 2.6–19 cm3), the percentage of tumor treated was 78% ± 12% (range 57%–90%), and the conformality index was 1.21 ± 0.33 (range 1.00–2.04). Treatment-related necrosis was evident on MRI studies at 24 and 48 hours. The median survival was 316 days (range 62–767 days). Three patients improved neurologically, 6 remained stable, and 1 worsened. Steroid-responsive treatment-related edema occurred in all patients but one. Three had Grade 3 adverse events at the highest dose.
NeuroBlate represents new technology for delivering laser interstitial thermal therapy, allowing controlled thermal ablation of deep hemispheric rGBM. Clinical trial registration no.: NCT00747253 (ClinicalTrials.gov).